

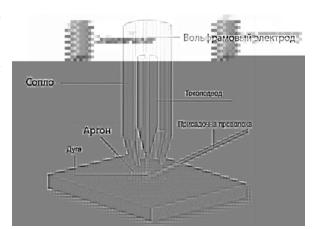
УСТАНОВКА ДЛЯ СВАРКИ ПРОДОЛЬНЫХ СТЫКОВ ЛИСТОВ И ОБЕЧАЕК «УСПО-1,2»

Техническое описание

Содержание:

- 1. Назначение оборудования. Технологические процессы, в которых используется оборудование.
- 2. Особенности используемых физических процессов.
- 3. Техническое описание. Особенности конструкции. Преимущества оборудования.
- 4. Технические характеристики.
- 5. Гарантийные обязательства, правила хранения и транспортировки. Срок службы. Сертификации.
- 6. Особенности эксплуатации.
- 6.1 Меры безопасности.
- 6.2 Требования к персоналу.
- 6.3 Требования к производственной площадке и монтажу.
- 6.4 Требования к коммуникациям и энергоресурсам.
- 7. Объем поставки. Особенности комплектации.
- 8. Возможные модификации. Сопутствующее оборудование.

E-mail: info@el-mech.ru


1. Назначение оборудования. Технологические процессы, в которых используется оборудование.

Установка «УСПО-1,2» предназначена для автоматической сварки неплавящимся электродом продольных стыков листов и обечаек в среде защитных газов для изделий из конструкционных, нержавеющих, жаропрочных сталей и сплавов с подачей присадочной проволоки и без неё. Сварка ведётся непрерывно горящей или импульсной дугой выпрямленного постоянного тока.

2. Особенности используемых физических процессов.

Сварка неплавящимся электродом (также сварка в защитных газах неплавящимся электродом) — это разновидность сварки, в которой источником теплоты выступает дуговой разряд, возникающий между вольфрамовым электродом и изделием. Этот тип является разновидностью методов дуговой сварки плавлением. Даная технология используется в основном для обработки алюминия, магния и их сплавов, а также прочих неферромагнитных металлов (например, нержавеющей стали, бронзы, меди, циркония, никеля).

При автоматизированном варианте и перемещении сварочной горелки, и подача присадочного материала (проволока) полностью механизированы. Технологический процесс контролирует оператор.

При сварке неплавящимся электродом используют постоянный ток прямой полярности, так как в этом режиме происходит максимальная проплавка металла деталей, которые подлежат соединению. Это достигается за счет эффективного использование энергии: до 85% тепловой энергии идет на проплавку деталей, до 7% - на нагрев электрода, остальное — лучевые потери.

К основным преимуществам следует отнести:

- 1. Возможности минимального деформирования в свариваемых металлах из-за маленькой зоны прогрева;
- 2. Высокое качество соединения за счет использования защитных газов, которые вытесняют кислород;
- 3. Относительно большая скорость выполнения работ;
- 4. Минимальные трудозатраты на последующую обработку шва;
- 5. Относительно широкий спектр свариваемых материалов.

3. Техническое описание. Особенности конструкции. Преимущества оборудования.

Установка «УСПО-1,2» состоит из следующих сборочных единиц, которые соединяются между собой механическими и электрическими связями:

- Опоры левая и правая;
- Ложемент;
- Балка прижимная задняя;
- Балка прижимная передняя;
- Балка направляющая;
- Замок;
- Блок педалей;
- Головка сварочная АСГВ-4АРК;
- Фиксатор;
- Газо- водо- электроразводка;

172386, Тверская обл., г. Ржев, Заводское ш. 2 Тел. (48232) 2-06-06, Факс (48232) 2-32-09

- Блок управления газом;
- Система пневматическая;
- Система управления;
- Источник питания «ВСВУ-400».

3.1 Правая и левая опоры.

Опоры левая и правая являются несущими элементами установки и по конструктивному исполнению сходны между собой. Они состоят из стоек и консоли. Своей нижней частью опоры крепятся к основанию, к консолям опор крепятся балки прижимные. К консоли левой опоры крепится своим основанием ложемент, к консоли правой опоры – верхняя часть замка.

На верхнюю поверхность консоли левой опоры крепятся два суппорта. Подвижные части суппортов объединены одним винтом.

3.2 Ложемент.

Ложемент представляет собой балку сварной конструкции, предназначенную для установки свариваемых изделий. Ложемент в верхней части имеет продольный желоб, в которой устанавливаются подкладки с формирующей канавкой.

3.3 Балки прижимные.

Балки, передняя и задняя, осуществляют прижим кромок свариваемого изделия к подкладке ложемента.

Сечение балок трапецеидальное. В расточках каждой балки установлено по 12 пневмоцилиндров. В конструкции балок предусмотрена блокировка, предупреждающая поломку подкладок ложемента в их поднятом положении.

Балки прижимные крепятся к подвижным частям суппортов левой и правой опоры и могут перемещаться в поперечном направлении относительно подкладок ложемента. Балки прижимные защищены продольными кожухами.

3.4 Балка направляющая.

Направляющая предназначена для перемещения каретки со сварочной головкой вдоль свариваемого стыка в режиме настройки или процессе сварки.

Направляющая состоит из сварной балки и винтовой пары. По концам балки винт устанавливается в подшипниковые узлы. Правый подшипниковый узел состоит из опоры, двух упорных и одного радиального шарикоподшипника.

3.5 Замок.

Замок предназначен для жёсткого соединения ложемента с прижимными балками. Замок состоит из двух корпусов, внутри которых размещена стяжка. Верхний корпус крепится к консоли правой опоры, нижний — к торцу ложемента. Корпуса соединяются друг с другом с помощью винта. Затяжка винта производится перекидной рукояткой. При установке свариваемой обечайки с торца ложемента предварительно опускается винт и вместе с рукояткой и стяжкой переводится в горизонтальное положение.

3.6 Блок педалей.

Блок педалей предназначен для управления перемещением клавиш прижимных балок, подкладок ложемента, а также для пуска и прекращения процесса сварки. На каждую балку и каждую половину подкладок предназначена

одна педаль. Одна предназначена для пуска процесса сварки, другая – для прекращения процесса сварки.

E-mail: info@el-mech.ru

Педали аналогичны по конструктивному исполнению и отличаются только типом переключателей.

3.7 Головка сварочная АСГВ-4АРК.

Головка сварочная служит для сварки продольных стыков листов и обечаек, закреплённых на ложементе установки.

Головка сварочная крепится к подвижной каретке балки направляющей. С помощью головки осуществляются настроечные и рабочие перемещения горелки:

- установочные перемещения горелки по вертикали в режиме настройки или в режиме автоматического поддержания заданной величины дугового промежутка;
- установочные перемещения горелки на свариваемый стык в поперечном направлении в режиме настройки вручную;
- установочные перемещения наконечника подачи проволоки относительно горелки по вертикали и в поперечном направлении, установка его в плоскости сварки на оптимальный угол;
- разворот горелки в плоскости сварки на угол $\pm 90^{0}$ с последующей ее фиксацией.

Конструкция установки «УСПО-1,2» обеспечивает равномерность перемещения головки и её элементов без вибраций, толчков и заеданий в диапазоне регулировок скоростей и величин перемещений, а также остановку их в крайних положениях с помощью концевых выключателей.

3.8 Фиксатор.

Фиксаторы в количестве четырех штук предназначены для точной установки стыка заготовки при сборке под сварку

3.9 Газо- водо- электроразводка.

В состав газо- водо- электроразводки входят кабели и провода управления с разъемами, трубки для защитного газа, шланги для охлаждающей жидкости, переходная колодка со штуцерами. С помощью газовых трубок осуществляется подключение газового баллона через газовый клапан, распределитель, ротаметры к сварочной горелке, защитному козырьку и на поддув к изделию.

3.10 Блок управления газом.

Блок управления газом служит для подачи и контроля расхода защитного газа.

3.11 Система пневматическая.

Пневмосистема предназначена для подачи сжатого воздуха к балкам прижимным на пневмоцилиндры подъема подкладок ложемента: подача давления к балке прижимной задней; подача давления к балке прижимной передней.

3.12 Система автоматического управления АСУ ТП

Состав системы управления АСУ ТП:

- Система управления режимом сварки
- Управляющий компьютер и программное обеспечение
- Система управления перемещением механизмов сварочной головки, перемещением головки сварочной и пневмооборудование установки

E-mail: info@el-mech.ru

Веб-сайт: www.el-mech.ru

- Система документирования режимом сварки

Система управления предусматривает:

- Автоматический режим сварки;
- Ручной (наладочный) режим для управления механизмами оборудования;

Диагностический режим для проверки исправности оборудования.

Система АСУ ТП обеспечивает выполнение и безопасность проведения технологических процессов, а именно:

- Исключение ввода оборудования в состояния, способные привести к браковке изготовляемых изделий и поломке самого оборудования.
- Аварийное отключение оборудования в ситуациях, связанных с опасностью для жизни и здоровья обслуживающего персонала.

АСУ ТП измеряет и контролирует основные параметры режима сварки:

- Ток сварки
- Скорость сварки, точность не менее 0,5мм/с
- Скорость подачи присадочной проволоки, точность не менее 0,5мм/с
- Длительность цикла сварки, точность не менее 0,1 с

При возникновении отклонений параметров сварки, формируется статистика отклонений, позволяющая принять решение о дополнительном контроле качества сварного шва. Для этого на мониторе высвечивается порядковый номер изделия и значение параметра, вышедшего за допустимые пределы.

Управление АСУ ТП обеспечивается через электрооборудование установки: шкаф управления, пульт управления, пульт сварщика, Источник питания.

3.13 Источник питания «ВСВУ-400».

Выпрямитель универсальный для сварки неплавящимся электродом модели «ВСВУ-400» предназначен для питания установки электродуговой сварки обычной и сжатой непрерывной и импульсной (пульсирующей) дугой жаропрочных нержавеющих сталей и титановых сплавов в аргоне.

Технические характеристики «ВСВУ-400»

1 схнические хириктеристики «ВСВ	
Номинальный сварочный ток при ПВ=60% и длительности цикла 60 мин., А	400
Диапазон регулирования сварочного тока при непрерывной	5±10% - 400±10%
сварке, тока импульса при импульсной сварке, А	3±10/0 +00±10/0
Диапазон регулирования дежурного тока, А	5±10% - 100±10%
Напряжение холостого хода, В, не более	100
Диапазон регулирования длительности импульса и паузы, с	0,04-2
Номинальное рабочее напряжение, В	30
Потребляемая мощность, кВА, не более	21
Номинальное напряжение трёхфазной питающей сети частотой 50 Гц, В	380±10%
Габаритные размеры, мм:	
– Длина	920
- Ширина	590
- Высота	800
Масса, кг, не более	240

E-mail: info@el-mech.ru

К особенностям установки «УСПО-1,2» можно отнести:

- Установка снабжена системой автоматического поддержания заданной величины дугового промежутка.
- Установка снабжена устройством колебания горелки.
- Снижено время сборки стыка под сварку за счет оригинальной конструкции ложемента.
- Секционная подача аргона на защиту корня шва.
- Педальное пневмоприжатие изделия к ложементу.
- Быстрая замена подкладки.

4. Технические характеристики.

Наименование параметров, единица измерения	Значение параметра	
, , , , , , , , , , , , , , , , , , ,		
Номинальное напряжение питающей сети, В	220/380±10%/15%	
Внутренний диаметр свариваемых обечаек, мм	250-1200	
Максимальная длина свариваемого листа (обечайки), мм	1200	
Толщина свариваемого материала, мм	0,5-5,0	
Диапазон регулирования:		
- скорость сварки, м/с (м/час), не уже	0,0013-0,011 (5-40)	
- скорость подачи присадочной проволоки,	0,0028-0,03 (10-110)	
м/с (м/час), не уже		
Диаметр присадочной проволоки. мм	0,8-2	
Диаметр вольфрамового электрода, мм	2-5	
Установочные перемещения горелки, мм:	100	
поперек стыка	ручное	
по вертикали к стыку	механизированное	
Номинальная скорость перемещения горелки по		
вертикали, м/с	$0,005\pm20\%$	
Угол наклона горелки в плоскости сварки, град.	±90	
Максимальное усилие прижатия кромок свариваемого изделия к		
ложементу при давлении воздуха 5 атм,кгс/см.пог		
	15	
Расстояние между прижимными клавишами балок (передней и		
задней), мм	0-50	
Номинальный сварочный ток, А	400	
Максимальная потребляемая мощность, кВт	28	
Габаритные размеры металлоконструкции установки, мм		
- длина×ширина×высота	2350×1355×2274	
Масса, кг, не более	1800	

5. Гарантийные обязательства, правила хранения и транспортировки. Срок службы. Сертификации.

5.1 Гарантийные обязательства.

172386, Тверская обл., г. Ржев, Заводское ш. 2 Тел. (48232) 2-06-06, Факс (48232) 2-32-09

Гарантийные обязательства ПАО «Электромеханика» при соблюдении условий транспортирования, хранения и эксплуатации изделия действуют в течение 12 месяцев со дня сдачи изделия в эксплуатацию, но не более 18 месяцев с момента отгрузки изделия Заказчику.

5.2 Правила хранения.

Условия хранения установки в части воздействия климатических факторов по группе 1 (Π) по ГОСТ 15150-69.

5.3 Транспортировка.

Транспортирование установки возможно любым видом транспорта в упаковке заводаизготовителя. Транспортирование в пределах цеховых помещений возможно без упаковки. Условия транспортирования в части воздействия механических факторов — средние (С) по ГОСТ 23216-78, а в части воздействия климатических фак-торов по группе 1 (Л) по ГОСТ 15150-69.

5.4. Сертификация.

Товар сертифицирован. Документом, который гарантирует качество и безопасность продукции, является Сертификат соответствия ТРТС (сертификат соответствия техническому регламенту Таможенного союза). Дополнительной регистрации в Ростехнадзоре не требуется.

6. Особенности эксплуатации.

6.1. Меры безопасности при использовании установки.

Необходимо соблюдать общие правила безопасности труда при выполнении электросварочных работ ОСТ 1.42095-80 и ГОСТ 12.3.003-86.

Заземление установки должно быть выполнено в соответствии с действующими правилами устройства электроустановок ГОСТ 12.2.007.8-75.

Провода от электропитания должны быть надежно изолированы и защищены от механических повреждений и действия высоких температур.

6.2. Требования к персоналу.

К работе на установке допускается лишь персонал, прошедший специальную подготовку по обслуживанию и наладке установки, аттестованный на электробезопасность, не ниже II группы и прошедший медицинскую комиссию.

6.3. Требования к производственной площадке и монтажу оборудования.

Монтаж оборудования производится согласно предоставляемой заводом-изготовителем монтажной схемы (фундаментного чертежа) с указанием точек подвода энергоресурсов, занимаемой площади и т.д.

Требования к фундаменту:

Фундамент производит завод-потребитель на основании данного задания и местных условий: состояния грунта, уровня грунтовых вод и т.д.

6.4. Требования к коммуникациям и энергоресурсам.

Установка рассчитана на работу с питанием от электрической сети переменного трехфазного тока напряжением $400 \text{ B} \pm 10\%$ и частотой $50 \text{ }\Gamma\text{ц} \pm 1$, отвечающей по показателям качества электроэнергии требованиям ГОСТ 13109-97, с заземленной нейтралью.

Условия эксплуатации печи должны соответствовать климатическому исполнению УХЛ, категории размещения по ГОСТ 15150-69 при производственных условиях потребителя:

- наличии вытяжной вентиляции;
- наличии сжатого воздуха с давлением не менее 0,4 МПа (4 кгс/см²).

172386, Тверская обл., г. Ржев, Заводское ш. 2 Тел. (48232) 2-06-06, Факс (48232) 2-32-09

E-mail: info@el-mech.ru

- наличии охлаждающей воды с давлением в подводящей магистрали не менее $0,25~\rm M\Pi a$ $(2,5~\rm krc/cm^2)$.

-

Требования к качеству охлаждающей воды должны соответствовать ГОСТ 16323-79 (ОСТ 16.0.801.399-87):

Взвешенные вещества, мг/л, не более	10
Жесткость общая, мг-экв/л, не более	3,5
Удельное электросопротивление, Ом×см, не менее	4000
Сульфаты (SO ₄), мг/л, не более	3
Железо общее (Fe), мг/л, не более	0,2

<u>Примечание</u>. Содержание в охлаждающей воде масел, смолообразных продуктов, нитритов не допускается. Температура подаваемой воды должна быть не более $+20 \pm 3$ $^{\circ}$ C.

7. Объем поставки. Особенности комплектации.

Наименование	Количество
Установка в сборе	1
Комплект ЗИП согласно ведомости	1
Эксплуатационные документы	
Руководство по эксплуатации	1
Монтажный чертеж	1
Ведомость ЗИП	1

8. Возможные модификации. Сопутствующее оборудование.

В настоящее время ПАО «Электромеханика» производит несколько модификаций установок для автоматической сварки неплавящимся электродом продольных стыков листов и обечаек в среде защитных газов «УСПО-1,2», «УСПО-1,8-2-2,5» чьи параметры отличаются друг от друга габаритами свариваемого изделия и соответственно масса-габаритными параметрами. Модификация установки может быть изменена, в зависимости от требований заказчика.

В установках типа «УСПО» возможно использовать источники иностранного производства Tetrix, Lincoln (по запросу Заказчика).

Для обеспечения бесперебойной работы установки рекомендовано дополнительно приобрести следующие расходные материалы: комплект запасных клавиш для балок прижимных, вольфрамовые электроды, присадочную проволоку (прутки).

E-mail: info@el-mech.ru

<u>Зпектромеханика</u>

Сравнительная таблица характеристик «УСПО-1,2», «УСПО-1,8-2-2,5».

Наименование	УСПО-1,2	УСПО-1,8-2-2,5
Габариты свариваемого изделия, мм - диаметр - длина	250-1200 1200	250-1800 2500
Габаритные размеры установки, мм - длина - ширина - высота	2350 1355 2274	3200 3160 3652
Macca	1800	4000

E-mail: info@el-mech.ru